Sort Hard: GPU Edition

Kyu Yeon Lee
College of Computing
Georgia Institute of Technology
kyuyeon.lee @ gatech.edu

Abstract—How can GPUs bring the heat to sorting? While
most algorithms are crafted with CPUs in mind, this report
dives into how GPUs can handle the heavy lifting. We revisit
and profile the performance of a suboptimal O(n log?® n) sorting
algorithm—bitonic sort—and explore how CUDA unleashes its
full potential.

Index Terms—GPU, sorting, CUDA, shared memory

I. INTRODUCTION

Sorting is one of the most fundamental problems in com-
puter science. There are CPU-optimized sorting algorithms,
such as quicksort or mergesort, where the performance gains
become marginal when applied to GPUs. However, bitonic
sorting, which has a suboptimal performance of O(n log?®n)
on CPUs, can take advantage of the massive parallelism of
modern GPU architectures. NVIDIA GPUs also offer pro-
grammable cache memory, called shared memory, which can
further optimize performance by reducing memory latency.
Here, the performance uplift of each implementation using
shared memory is described.

The goal is, first, to write a parallelized version of bitonic
sorting in CUDA, and second, to improve performance by
using shared memory and lastly, apply other optimization
methods including pinned memory and register allocation. The
implementation for shared memory application consists of five
phases: bitonic sorting using only global memory, basic usage
of shared memory, using shared memory except for bitonic
merge, except for intermediate merge, and full usage of shared
memory. Each phase is numbered from O to 4.

Performance evaluation is conducted on NVIDIA L40S
GPUs in the PACE-ICE environment provided by the Georgia
Institute of Technology.

II. BACKGROUND

A. Bitonic Sorting

Bitonic sorting has a recursive nature where it bitonically
sorts the two sub arrays in ascending and descending order,
and then merges the two arrays int a sorted array. This can
be also written in an iterative fashion as shown in Algorithm
1. The last for loop where it iterates from 0 to n can be
parallelized by a GPU kernel. [1]

This can also be visualized as a sorting network as 1. Each
horizontal wire represents an element of the array to be sorted,
and the arrow describes a swap operation which points to the
larger element.

Algorithm 1 Pseudocode for iterative bitonic sorting
for k =2k <n;k<+ kx2do
for j =k/2;5>0;5+ j/2 do
for . =0;i <n;i<i+1do
[< bitwiseXOR (4, j)
if [> ¢ then
if bitwiseAND(7, k) == 0 then
if arr[i] > arr[l] then
swap arr[i] and arr(l]
end if
else
if arrfi] < arr[l] then
swap arr[i] and arr[l]
end if
end if
end if
end for
end for
end for

[
L

|+

T H]

l+—1

—
lef—

[+

SRCHEN ISR H =S

SRCRERENEN SRS
o S e e B

-
1
lef—

A T T

—|
1

Fig. 1. Visualized sorting network of bitonic sort [1]

B. CUDA Shared Memory

Shared memory in CUDA is a programmable cache, where
it has much faster access time compared to global memory.
The basic idea for utilizing such memory is to keep the
frequently accessed data within the shared memory to avoid
costly global memory accesses. Bitonic sorting can leverage
shared memory since the working set of the sorting is straight-
forward. The parallelizable region in algorithm 1 is applied to
only a fixed, sequential region of the array. Our goal is to fit
this part in shared memory as much as possible.

III. KERNEL IMPLEMENTATION AND OPTIMIZATION

The following describes the implementation and perfor-
mance for each phase of optimization. The result for sorting
10,000, 000 items is shown at Fig. 1. A trend in decreasing
kernel time can be observed, but for phase 1.

average kernel time (ms)
16
14
12

10

phaseQ phase 1 phase 2 phase 3 phase 4

Fig. 2. Kernel time for sorting 10,000,000 elements for each phase of
implementation

A. Phase 0 - Using Only Global Memory

The initial implementation has the parallelizable region
translated to CUDA code. The red boxes enclosing the swap
arrows in 1 are the parallelizable regions, which can be done
in a single kernel call without repetition within. This results
in a complexity of O(log®n) kernel launches, where if the
size of the input is 16, 777,216(= 224, results in 299 kernel
launches. Given that global memory access is costly and that
kernel launches are unnecessary overhead, this does not have
optimal performance.

B. Phase 1 - Basic Usage of Shared Memory

Here, the implementation was to use shared memory in the
kernel, but not changing the number of kernel launches. That
is, modifying only the kernel in III-A. This simply loads the
numbers to be compared into shared memory, compare the
numbers, and store them into global memory. Such implemen-
tation only shown an increase in the total kernel time, where
it is pure overhead. In III-B, the numbers to be compared are
likely to be stored in registers, but this implementation just
adds an unnecessary intermediate step in the shared memory.
This results in degradation of performance, an overhead of 4%
increase in kernel time.

C. Phase 2 - Using Shared Memory Except for Bitonic Merge

Given that III-B results in adding overhead, restructuring the
iteration is required to reduce CUDA launches and to make a
single kernel access shared memory more frequently. The first
idea is to implement a CUDA kernel that performs end-to-
end sorting if the given array (or subarray) fits in the shared
memory. Consider the case in 1. Suppose we have shared
memory of 4 integers per thread block. Our goal is to fit the
first two rows of blue/green boxes in 1 in a single kernel,
allowing it to not access the global memory for sorting. Also
note that for this implementation, the kernel should also be
able to decide if the given array is to be sorted ascending
or descending. This can be identified by the blockIdx.x
value, where if it is ascending for even and descending for

odd. This implementation shows 25% less kernel time where
global memory access are significantly reduced. The kernel
launches are also reduced to 234 calls, where the shared
memory implementation can do the work for the first 66
kernels in III-A and III-B.

D. Phase 3 - Using Shared Memory Except for Intermediate
Merge

As III-C have shown promising results, shared memory can
be used for the later part of the algorithm, bitonic merging. No-
tice the rightmost blue region in 1. Each parallelizable region
is subdivided into two identical problems of smaller size. The
identical ascending sort also makes the implementation easier,
which does not require the decision of ascending/descending
sort within the kernel. This optimization shows about 5% of
reduce in kernel time and a reduction of 10 kernel launches.

E. Phase 4- Fully Utilizing Shared Memory

Considering the idea from III-D, we can also apply the
shared memory usage to intermediate merges. By intermediate
merges, it is visualized in 1 as the smaller, but identical
shapes of the rightmost region in blue. However, the green
regions indicate an ascending sort, where the decision should
be addressed in the kernel. This can be evaluated by using
the global thread ID masked by the size of the input that
the thread block is working on. This reduces the kernel time
30% compared to III-D, which is the greatest observed, and
reduces the number of kernel launches to 119 for input of size
16,777,216. This is a speedup of nearly 2x compared to the
initial, global only sorting and up to 77x speedup compared
to CPU based quick sort.

IV. PROFILE RESULTS

This workload can be divided into three kernels. The first
one is a global bitonic merge kernel bitonicMergeGPU ()
which has no iterations within. Note that this is identi-
cal to the initial implementation in III-A which doesn’t
utilize shared memory. bitonicSortGPUshmem() is
sorts a subarray which fits in the shared memory, and
bitonicMergeGPUshmem () performs a bitonic merge
which fits in the shared memory. We can gain some insights
from the profile results.

A. Compute Throughput

The two bitonic+shmem () kernels show a relatively
higher compute throughput, ranging from 61% to 75%, com-
pared to bitonicMergeGPU (), about 0.16. This is because
the shared memory kernels operate on a working set of better
locality and iterates, whereas the global kernel does only a
small number compare operations without any iterations.

B. Memory Throughput

Memory throughput shows the opposite of compute
throughput, where the global kernel. Another interesting point
is that all three kernels show similar L1, TEX and L2 hit
rates. This is because shared memory does not go through
the mentioned caches but has an independent path. Therefore,

most of the cache misses are compulsory misses, since this
is a streaming application. In terms of memory accesses, the
three kernels should not show much difference, but the shared
memory kernels work on the shared memory for a longer time,
not accessing the DRAM until the sorting is done.

C. Register Pressure

Register usage is another item for optimization, which
has notable impact on thread occupancy because it can be
a deciding factor on whether the warp can be scheduled.
The initial profile result indicates that register usage for
bitonicSortGPUshmem () requires 62 registers, which
was a major bottleneck for thread occupancy. By applying
optimization techniques described in the later sections, this
was reduced to 20, resulting in higher (90 + %) occupancy.

D. Duration

The shared memory bitonic sorting takes the longest time
overall of 1.29, and the two other kernel take approximately
0.17 and 0.10, the non shared memory taking the least due
to not having iterations. bitonicSortGPUshmem () takes
less iterations than bitonicSortGPUshmem () since it is
a subset.

V. OPTIMIZATION

A. Thread Block Size Tuning

Thread block sizes decide the size of shared memory
usage, since this implementation uses 2 times the size of the
number of threads. Larger thread blocks give more parallelism,
however, also may limit occupancy since more threads in a
block require more resources. Therefore, the size should be
tuned based on the results, and thread blocks of size 256 shows
the best performance balancing parallelism and occupancy.

B. Pinned Memory

Outside of kernel optimization, pinned memory [2] may be
used to optimize device-host transfers. Pinned (page locked)
memory, is memory such that the operation system does not
swap out. This also bypasses memory management layers,
which lets direct access to the system memory. Existing host
memory can be pinned by cudaHostRegister (), and this
can be placed after the kernel launches for the task to overlap
with compute. This results in the runtime of ‘cudaMemcpy()*
is significantly reduced as described in Figure 3.

C. Register Usage

Registers are limited resources that are critical for the
performance of compute kernels. This includes common pro-
gramming language techniques such as reducing number of
intermediate variables, recalculating instead storing, reducing
control logic, etc. In this example, applying such practices
greatly reduced register usage from 40 to 20, which shown by
Nsight Compute, contributing to higher thread occupancy.

transfer time(ms)

14
12

10

vl

0 .

h2d(default) d2h(default) h2d(pinned)

d2h(pinned)

Fig. 3. Performance of pinned memory of transferring 10, 000, 000 integers

VI. CONCLUSION

Bitonic sorting can be 100x faster compared to CPU
sorting, and shared memory, register optimization, and pinned
memory has considerable contributions to the speedup since
sorting is a memory bound workload.

VII. FURTHER WORK

Nvidia L40S GPUs provide up to 7.125KBs of shared
memory per thread block. However, only 1KB of shared
memory per block is used in this study. This is because
each thread operates on one ascending/descending bitonic
sort/merge. The 1KB shared memory is bound by the number
of threads used for maximum performance, which is 512
threads per block. It would be an interesting approach to load
as much as data possible in the shared memory and modify
the kernel to handle multiple bitonic sorts, but the complexity
of the implementation being high, this is left as a further item.

REFERENCES

[1] Wikipedia Contributors, “Bitonic sorter,” Wikipedia, The Free Ency-
clopedia, https://en.wikipedia.org/wiki/Bitonic_sorter, accessed Sep. 22,
2024.

[2] Mark Harris, “How to Optimize Data Transfers in CUDA C/C++”,
NVIDIA DEVELOPER Blog, https://developer.nvidia.com/blog/how-
optimize-data-transfers-cuda-cc/

